
Introduction to FlexGantt

Topic: Commands Dirk Lemmermann
Software & Consulting
Zurich, Switzerland

Command

❖ Commands are executed in the background.
❖ Run in separate thread.
❖ Passed to a command stack.
❖ Can be undone and redone.
❖ Report their execution progress.
❖ Can be composed to composite commands.

Commands Demo

ICommand

public interface ICommand extends Serializable {

void executeCommand(IProgressMonitor monitor) throws CommandException;

void undoCommand(IProgressMonitor monitor) throws CommandException;

void redoCommand(IProgressMonitor monitor) throws CommandException;

boolean isUndoable();

boolean isRedoable();

boolean isRelevant();

String getName();
}

Example: Set Key on Node
public class DefaultChangeKeyCommand extends AbstractCommand {

private Object oldKey;
private Object newKey;
private DefaultGanttChartModel model;

…

public void executeCommand(IProgressMonitor monitor)
throws CommandException {
monitor.beginTask("Changing key to: " + newKey, 1);
oldKey = model.getKey(node);
model.setKey(node, newKey);
monitor.done();

}

…
}

Composite Commands
❖ Executes individual commands as a single command.
❖ All sub-commands are executed, undone, redone as one.

CommandStack
❖ Central place for executing commands.
❖ Each Gantt chart has its own command stack.
❖ Applications can choose to set the same stack on all

Gantt charts and related views.

ICommandStack

public interface ICommandStack {

void execute(ICommand cmd, IProgressMonitor monitor);

void undo(IProgressMonitor monitor);

void redo(IProgressMonitor monitor);

…

void addCommandStackListener(ICommandStackListener l);

void removeCommandStackListener(ICommandStackListener l);

Command Stack Listener
❖ Listeners can be attached to the stack to receive events when commands are

started, executed, cancelled, failed, undone.

public interface ICommandStackListener extends EventListener {

/**
 * Gets called whenever the command stack changed. The event object that is
 * passed to this method contains information about the type of event and a
 * reference to the command that caused the event.
 */

void commandStackChanged(CommandStackEvent e);
}

Command Stack Event

public enum ID {
COMMAND_CANCELED, COMMAND_EXECUTED, COMMAND_FAILED,
COMMAND_STARTED, COMMAND_UNDONE

}

public CommandStackEvent(ICommandStack stack, ICommand command,
ID id, Exception ex) {

…
}

public ID getId() {}

public ICommand getCommand() {}

Progress Monitor
❖ Used to report progress on an activity.
❖ Much more sophisticated approach then just min, max,

value progress.
❖ Supports sub progress monitors.
❖ NullProgressMonitor for unknown amount of work.
❖ Implemented by GanttChartProgressMonitor (standard

Swing progress monitor), GanttChartGlassPane, and
GanttChartStatusBar.

Command Interceptors

❖ Used to „intercept“ commands BEFORE they are being
executed.

❖ Registered with the Gantt chart (not the command
stack).

❖ Only called when using
AbstractGanttChart.executeCommand(ICommand);

❖ Used for user feedback, populate commands with data,
cancel commands.

Command Interceptor Example
❖ By default every event line registers a listener to

intercept the command that creates an eventline object.
gc.setCommandInterceptor(DefaultCreateEventlineObjectCommand.class,

new ICommandInterceptor() {
public boolean intercept(AbstractGanttChart gc, ICommand cmd) {

DefaultCreateEventlineObjectCommand createCmd = (DefaultCreateEventlineObjectCommand) cmd;

EditDialog dialog = new EditDialog(createCmd);
dialog.setVisible(true);

if (!dialog.isCancelled()) {
createCmd.setTimeSpan(panel.getTimeSpan());
createCmd.setEventlineObjectName(panel

.getLabelField().getText());
return true;

}

return false;
}

});

❖ Create NotifyUserCommand, implement ICommand
❖ Pass command to GanttChart.commandExecute()
❖ Create NotifyUserCommandInterceptor, implement

ICommandInterceptor
❖ Bring up a dialog in intercept() method to confirm

command execution
❖ Register interceptor via

AbstractGanttChart.setCommandInterceptor()
❖ Run command again

