Introduction to FlexGantt

Dirk Lemmermann

TOpiC : C Ommands Sotftware & Consulting

Zurich, Switzerland

Command

* Commands are executed in the background.

“ Run in separate thread.

+ Passed to a command stack.

+ Can be undone and redone.

“ Report their execution progress.

* Can be composed to composite commands.

Commands Demo

AW EENEIENPAPEEIKIR B ENEENEIEd S By
L
giiezEils L, A 23.Dez 2013 30. Dez 2013 mmw Perform various editing operations on the given
Name S\/MD/MDF|S|S/MDMD|F|S|S|M|DMD|F|S|S|MDIMD|F|S|S|M|D ° timeline objects. The text descriptions to the right
: - - provide information on which operations can be
. f93-12-13 10:03 13 07:25 = performed on each object. Notice how the list below
1 Node 0 8 T fills up with the various commands run in order to
2 Node 1 24 execute each operation.
4
3 Node 2 \ Enabling command interceptors will cause "Are you
d sure?" dialogs to appear. Interceptors are invoked
4 Node 3 duraticﬁn: no:E before a command actually executes.
5 Node4 | I} Actions
6 Node 5 durati#n:
Not Undoable Command
7 Node 6
8 Node 7 : yes| duration: pc Long Running Command
9

Noded | 11 o o g o o o g s B Use Command Interceptors

1no, duration: pc

W [[| [) [|) f) | (o) | (e |) (o) | (o) f [om)) (v | () f (um) | (o) | (o) f (o) | () | ()

10 Node 9 &4 Enable Dragging
Node 10

12 Node 11 - yes | dutation: ye

Command Stack

13 Node 12

14 Node 13 Long Running

15 Node 14

16 Node 15 1no/durati

17 Node 16

19 Node 18

20 Node 19 Il CommandsDemo.java
Nada 20 I CommandsModel.java

el
e

' Aufo Auto

[Command

public interface ICommand extends Serializable {
volid executeCommand(IProgressMonitor monitor) throws CommandException;
volid undoCommand(IProgressMonitor monitor) throws CommandException;

volid redoCommand(IProgressMonitor monitor) throws CommandException;

boolean 1sUndoable();
boolean isRedoable();
boolean isRelevant();

String getName();

pub

Example: Set Key on Node

lic class DefaultChangeKeyCommand extends AbstractCommand {

orivate Object oldKey;
orivate Object newKey;
orivate DefaultGanttChartModel model;

public void executeCommand(IProgressMonitor monitor)
throws CommandException {
monitor.beginTask("Changing key to:
oldKey = model.getKey(node);
model .setKey(node, newKey);
monitor.done();

+ newKey, 1);

Composite Gommands

* Executes individual commands as a single command.

+ All sub-commands are executed, undone, redone as one.

CommandStack

* Central place for executing commands.

* Each Gantt chart has its own command stack.

“ Applications can choose to set the same stack on all
Gantt charts and related views.

[CommandStack

public interface ICommandStack {
vold execute(ICommand cmd, IProgressMonitor monitor);
vold undo(IProgressMonitor monitor);

volid redo(IProgressMonitor monitor);

vold addCommandStackListener(ICommandStackListener 1);

vold removeCommandStackListener(ICommandStackListener 1);

Command Stack Listener

R/

+ Listeners can be attached to the stack to receive events when commands are
started, executed, cancelled, tailed, undone.

public interface ICommandStackListener extends EventlListener {

/**
* Gets called whenever the command stack changed. The event object that 1is
* passed to this method contains information about the type of event and a
* reference to the command that caused the event.
574

volid commandStackChanged(CommandStackEvent e);

Command Stack Event

public enum ID {
COMMAND_CANCELED, COMMAND_EXECUTED, COMMAND_FAILED,
COMMAND_STARTED, COMMAND_UNDONE

¥

public CommandStackEvent(ICommandStack stack, ICommand command,
ID 1d, Exception ex) {

¥

public ID getId() {}

public ICommand getCommand() {}

Progress Monitor

* Used to report progress on an activity.

* Much more sophisticated approach then just min, max,
value progress.

* Supports sub progress monitors.

* NullProgressMonitor for unknown amount of work.

* Implemented by GanttChartProgressMonitor (standard
Swing progress monitor), GanttChartGlassPane, and
GanttChartStatusBar.

Command Interceptors

* Used to ,,intercept” commands BEFORE they are being
executed.

* Registered with the Gantt chart (not the command
stack).

“ Only called when using
AbstractGanttChart.executeCommand(ICommand);

* Used for user feedback, populate commands with data,
cancel commands.

Command Interceptor Example

* By default every event line registers a listener to
intercept the command that creates an eventline object.

gc.setCommandInterceptor(DefaultCreateEventlineObjectCommand.class,
new ICommandInterceptor() {
public boolean intercept(AbstractGanttChart gc, ICommand cmd) {
DefaultCreateEventlineObjectCommand createCmd = (DefaultCreateEventlineObjectCommand) cmd;

EditDialog dialog = new EditDialog(createCmd);
dialog.setVisible(true);

if (!dialog.isCancelled()) { Eventline
createCmd.setTimeSpan(panel.getTimeSpan());

createCmd.setEventlineObjectName(panel

.getLabelField().getText()); Label: {Untitledl
REEE PASEREIE:S .
}
v | Ackivity
return false;
Iy : A
1 Start Time: | 7/21/04 12:00 AM

Finish Time: | 7/27/04 12:00 &M 2

[OK][Cancel

Create NotifyUserCommand, implement ICommand

+ Pass command to GanttChart.commandExecute()

* Create NotifyUserCommandInterceptor, implement
[CommandInterceptor

* Bring up a dialog in intercept() method to confirm
command execution

* Register interceptor via

AbstractGanttChart.setCommandInterceptor()

* Run command again

